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On resolving the multiplicity of tensor products of irreducible 
representations of symplectic groups 

Eric Y Leung 
Harrisburg Area Community College/Lebanon Campus, Lebanon, PA 17042, USA 

Received 28 January 1993, in final form I June 1993 

Abstract. The multiplicity problem of r-fold tensor products of irreducible representations, 
of Sp(Zk, C) are considered. The arbitrary r-fold tensor product is shown to be isomorphic 
to a subspace of the holomorphic Hilbert (Bargmann) space of n X 2k complex variables. 
Maps are constructed which carry an irreducible representation of Sp(Zk, C )  into this 
subspace. An algebra of “ m u t i n g  operators is constructed and it is shown how eigenvalues 
aod eigenvectors of certain of these operators can be used to resolve the multiplicity. 

1. Introduction 

One of the outstanding problems in the representation theory of Lie groups is the 
multiplicity problem. In decomposing tensor products of irreducible representations of 
a group, the same irreducible representation may appear more than once; the problem 
is to fmd a canonical way of treating the equivalent representations which may occur 
in this decomposition. Several authors have analysed this problem for the unitary groups 
from several points of view 11-41, Recently, Klink and Ton-That [5] have given a 
method to decompose tensor products of irreducible representations of U(N) by using 
a certain class of commuting differential operators. Underlying their method is the use 
of polynomial realizations of all irreducible representations of the U(N) groups. Such 
polynomial realization has the advantage of being basis independent. Moreover, the 
method can be implemented on a computer. 

In this paper, we shall give a procedure for decomposing r-fold tensor products of 
irreducible representations of Sp(2k, C), the complex 2k x 2k symplectic groups, by 
exhibiting a general class of commuting Casimir operators. The main tools needed to 
carry out this analysis are polynomial realizations of tensor products and the theory 
of dual pairs [6] ,  which is used to construct the algebra of C a s i  operators. Our work 
follows the spirit of [5]. 

The general setup of the problem will. be discussed in section 2. Section 3 makes 
use of the notion of dual pairs to exhibit an algebra of commuting operators. Certain 
elements of this algebra are Hermitian; the eigenvalues and eigenvectors of these ele- 
ments can then be used to resolve the multiplicity. The procedure is shown explicitly 
in section 4 with an example of representations of Sp(4, C). 

2. The general setup 

Let G denote the complex X x 2k symplectic group. It is well known that an irreducible 
holomorphically induced representation of G is uniquely determined by a k-tuple of 
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non-negative integers (m) = (ml , . . . , mk), called the signature of the representation, 
which satisfies the dominant condition ml> .  . . >mk ([lo]). In general, a concrete reali- 
zation of such an irreducible representation of G can be obtained as follows. Suppose 
( m ) = ( m , , .  . . ,mk)isasignatureofGsuchthatmq+l=. ..=mk=Oforsome l<q<k. 
Let Cqx" be the vector space of all q x 2k complex matrices and S(Cyx2k*) be the 
symmetric algebra of all polynomial functions on Cy'? Let Bq denote the lower 
triangular subgroup of GL(q, C ) ,  the q x q general linear group. We define a holo- 
morphic character 

e"): Bq+ C* 

C'"(b) = b? . . . b z  bcBq 

where b, is the ith diagonal element of b. Now, consider the following vector space: 

and ( " - )=o, l<i<j<q az,az,,, az,+,azjP 
Then according to [16], the representation R&') of G on V p  by right translation, that 
is, ( & ; ) ( g ) f ) ( Z ) = f ( Z g ) ,  for all (g, Z)EG x C""", is irreducible with signature (m). 
Hence, our representation space of G is a polynomial space. 

Next, we consider r-fold tensor products of arbitrary irreducible representations of 
G with signatures (Mcl)), . . . , (M(,)) ,  respectively, where each label M(,> is an k-tuple 
of integers (Mi,, . . . , Mjk) ,  1 <i<r .  We discard those Mv,  1 <i<r ,  1 <j<k,  which are 
equal to zero, and relabel the indices so that they form an n-tuple of integers of the 
form 

(M)=(M,, . . , , M p , ,  MP,+l,. , . , M p , + p 2 , .  . , > M.) 
where M I , .  . . , M,, are the pl non-zero elements of M , , ) ,  and MP,+, ,  . . . , are 
the p z  non-zero elements of M,) and so on such that p ,  + . . . +p,= n. 

Let C""""denote thevectorspaceofaUnxZkcompIexmatricesandY=Y (C"*") 
denote the Fock space of n x 2k complex variables, as constructed in [5].  

If D. denotes the group of all complex diagonal invertible matrices of order n, and 
if ( M )  = ( M ' ,  . . . , M.) is the n-tuple of non-negative integers as before, we define a 
holomorphic character 

( (M):Dn+C* 

( ' " " ' ( d ) = d ~ .  . .d$ VdeD.. 

A polynomial functionp: CnX"+Cis said to transform covariantly with respect to 
f M '  iff(dZ) = ('M'(d)f(Z), for all (d, Z )  belonging to D. x Cnx". The polynomial 
functions which transform covariantly with respect to p c M )  form a subspace of 9, 
denoted by PrM)=Pc")(C"xZk).  Let a"' denote the representation of G on P ( M )  by 
right translation. By an argument similar to the one used in the proof of theorem 2.4 
in [7], we have the following: 

Theorem 2.1. The G-module PtM) is isomorphic to the Kronecker tensor product 
( U,P ,..., 0) Q I , ,  QJ$$'o....?o) 

V i p  
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Remark 2.2. As will be shown later, it is convenient to have an explicit formula which 
gives the direct sum decomposition of the tensor product (ml, . . . , m*)@(n, 0, . . . , 0) 
of G. There are many well-known formulas for the decomposition of such a tensor 
product [8, 91. Using a result in [SI, we have derived the following formula for the 
decomposition of tensor product ( m l , .  . . , mk)@(n, 0 , .  . . ,O), which we call the Weyl 
formula of symplectic groups (see 171 for details): 

h , m z , .  . . ,mk)@@,O, .  . . ,O) 
z C @ ( m l  +al -ax ,  m2+az-azc-I, m3 +a,-a=-=, . . . , mk+ak-akcl) 

where the sum is over all integers ai, i= 1, . . . , 2k, subject to the following conditions: 

a l +  . . .+ a x = n  

0 Q aiQmi-, - mi - asx--(i--2) + aF-ci-l, 

0 Q a ~ k - ~ < m ~ + ~  -m+ 

O<a*+, <mk 

where i = 2 , 3 , .  . . , k andj=O,l, .  . . , k - 2 .  
All the inequalities above are necessary for making sure that the signatures in the 

direct sum satisfy the dominant conditions. These inequalities arose when we derived 
our formula, which involved the consideration of certain Young tableaux. This 
formula is an analogue of the Weyl formula for U(N) in [lo, section SO]. Now, if 
m l ,  . , . , mk and n are large integers, then the tensor product decomposition of 
( m l ,  . . . , mh)@(n, 0 , .  . . . ,0) will involve many terms and the calculation of such a 
decomposition is a tedious process. The advantage of the above formula is that we can 
easily write a computer program to perform the calculation. If we use the above formula 
repeatedly n times, then we can easily obtain the direct sum decomposition of the G- 
module 

f i M )  vgl.0 ..... 0 ' 6 ,  , ,@ Vg".O I . . . .  0 )  

Now, for 1 Qi<r,  let B,,denote the lower triangular (Borel) subgroup of GL(pi ,  C) .  
Let HiMM' denote the subspace of P(M) which consists of all polynomial functions f 
which satisfy the covariant condition 

(2.3) 

where bJ, 1 Q ' < n ,  denotes the jth diagonal entry of the matrix 

'.. O]. 
4, 

Also, let (MJGL (Mi , ,  . . . , Mik, 0, . . . , 0) be a 2k-tuple of non-negative integers, for 
l < i < r .  In [SI, U& and Ton-That proved the following: 

Theorem 2.4. The GL(2k, C)-module  MI)^^@. . .@(M,)GL is isomorphic to the 
GL(2k, C)-module (&%, HiM') where GL(X, C )  acts on HhM) by right translation. 



5854 E Y Leung 

Now, consider the following vector subspace of PcM):  

I i- I i 

forap,<Pp,, C p , + l S a , , , P , , S C p . , l ~ i ~ r  . 
s= I *= 1 

To simplify notation, we let H'M'=H'M)(Cnx2k).  Then we have the following: 

Theorem 2.5 The r-fold tensor product V&F1))@. . .@V@"' is isomorphic to the G- 
module H'M', where G acts on H'M' by right translation. 

Proof Let (m) he a 2R-tuple of non-negative integers that satisfies the dominant condi- 
tion. Let q be the number of non-zero elements in (m). Consider the vector space 

v@= { f i ~ ~ ' ~ + ~ l q ~ X , f i s  a polynomial function, 

Then according to [ 111, the representation am! of GL(2k, C )  on 
tion is iireducible with signature (m). Also, V'"' is a subspace of Vg!, if q < k .  

f ( b X ) = ~ ' " ' ( b ) f ( X ) , V ( b , X ) ~ B , x  C4""}. 
by right transla- 

Now, define a map 

cp: Vby)GL@. . .@V@"+HLM) 

by 

cp(h@. . .@A) j =fi(Zd..  .A(Z,) (3 
for Z , E C ~ I ~ ? * ,  1 < i < r  and extend cp linearly. Now, we have 

dh@.. .@A) ("I.. . Z ) = h ( b ~ Z d @ .  . .@fi(brzr)  
b, 

=b?. . . b ~ h ( Z i ) b ~ 2 i ~ , + i .  . . f i(Zz) . . . b%A(Z) 
= bM' 11 . . . b%h(Zi ) .  . .A(Zr) 

=b? .  . . b2cp(h@. . .@jXZ) 

for b i e B , ,  Z E C ~ ~ " ~ ,  Z e C n x Z  and 1 S i S r .  

VLy)GL by RL?)GL(g) 663.. .@/J=R@)GL(g)f i@.  . .@R#'GLf.. 
Hence, q(V!@"L@. . .@V!.$!'GL) is in HhM'. GL(2k, C )  acts on VLYhL@. . .@ 

Now, let gEGL(k, C ) ,  then we have 

&Ykdcp(h@. . . @ f ) ( Z ) = c p ( f i O . .  . @ M Z g )  
=fi(Z,g). , .A(Z,g) 
=Rgp"'(g)fi(Z,). . . R&yJ"L(g)f,(Z,) 
= P,(RLY'Ydh@ . . . @ R L P Y g ) A ) ( Z )  

= ( d R & Y ) k ) ( h @ , .  , @ A ) ) ) ( Z ) .  
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Therefore, q is an intertwining map with respect to GL(2k, C )  and this implies q is 
also an intertwining map with respect to G. Clearly, q is one-to-one by dehition. By 
theorem 2.4, V&%3. . .@V&?)GL and HiM' have the same dimension, hence q is a 
G-module isomorphism. Now, if hie V&?)OL, then q(hl@.  . .@h,)=hl(z l )  . .: h,(z,) by 
the definition of the map q. Suppose we have 

Dn,p,hi=O for hie Vi?) a,, < P P ,  1 g i g r .  

Then 

Dn4,p,,Hhl@.. .@hr)=Danjp$~ . . . h, 
=hi . . . hj-ihj+i . . . h,D,,p,hi 

= 0. 

Therefore, we have q( V @ ~ ) @ .  . .@ Vi?)) c H ( ~ ) c H & ~ ) .  Since q is a G-module iso- I 
morphism, every element in HiMM' is completely determined by its pre-image. So, if 
~ E H ' ~ ) ,  then the pre-image offmust  be in V@")@. ..@V$F). Hence, we have 
q( V&Fll)@. . . @ I V & ? ) ) = H ( ~ )  and the result follows. Q.E.D. 

As we shall see later, theorem 2.1, remark 2.2 and theorem 2.5 are very important 
in the decomposition of the tensor product V$pl)@. . .@V$?). Since the space H'M) 
is a subspace of PcM), theorem 2.1 gives an upper bound for the multiplicity of an 
irreducible representation of G occuring in the tensor product. We conclude this section 
with the following: 

oefinition 2.6. Let V&T1 be a G-module. The isotypic component I( Vi:]) of Vi:) in 5 
is the sum of all G-modules in 9 which'are equivalent to V!:'. 

3. The multiplicity breaking of the tensor product 

We shall now give a procedure for explicit decomposition of the r-fold tensor product 
(or equivalently the G-module H'')), by using the theory of dual pairs. First, we let L(') 
denote the representation of GL(n, C )  on PcM) defined by (L(M'(g)p) (Z)  =p(g- 'Z) ,  
gEGL(n, C )  and RIM) denote the representation of G on PM) by right translation. If 
we let L, (respectively, &,) denote the infinitesimal operators of L(M) (respectively, 
R'M') corresponding to the standard basis e, (respectively, era) of the Lie algebra C""" 
(respectively, C"'") of GL(n, C )  (respectively, GL(2k, C)); then we have 

2x a 

Among these operators, we have the particular operators 
i - 1  i 

where C pK + 1 g api PP,< 1 P k  
k = l  k = l  

L.,Pp, 
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which correspond to the infinitesimal operators of the subgroups GL(pi, C ) ,  1 < i < r ,  
of GL(n, C). It was shown in I S ]  that Hkw) consists of all polynomial functions in P') 
which are simultaneously annihilated by all operators of the form 

L.,P, with a, c p,, l < i < r .  

Therefore, the subspace H'M' of HhM) consists of all polynomial functions in Pc") 
which are simultaneously annihilated hy all operators of the form 

L%% and with ap, < P,, 1 < i < r .  (3.1) 

Now, let SU(n,n) be the linear isometry group for the Hermitian form 
12,12+12~J2+. . .+12.12-lZn+1)2-. . .-IZ,,,IZover C. Then the group S0*(2n) is the 
set of all elements g in SU(n, n)  such that grJg= J, where gr is the transpose of g and 

where In is the n x n identity matrix. Then according to [6,12], (S0*(2n), Sp(2k, C ) )  
forms a dual pair of reductive groups. Let 

and 

These operators form a basis for the Lie algebra so*(&) of the group SO*(Zn) and 
they generate a universal enveloping algebra 4' of differential operators which acts on 
9. Moreover, by the Poincare-Birkoff-Witt theorem, the ordered monomials in Lo, P,, 
D, form a basis for the algebra %. 

Remark 3.3. In [ 5 ] ,  Mink and Ton-That have used the dual pair (U(n), GL(N, C)) 
for their decomposition of tensor products. Since Sp(2k, C )  is a subgroup of GL(2k, C), 
the dual group S0*(2n) contains U(n) as a subgroup. It is easy to see that the operators 
Lil form a basis for the Lie algebra of U(n). As we shall see later, the addition of the 
Po and D, operators makes it possible for us to generalize the result in [5]. 

Now, assume the number of times an irreducible representation RLT) of G occurs 

ways of obtaining a closed-form formula for this multiplicity [9, 131). However, those 
close fonn formulae require the use of Young tableaux and it is, in general, difficult to 
compute when G is large. Moreover, it is not easy to perform such a calculation on a 
computer. In contrast, to compute the multiplicity of R$? in f i M )  using theorem 2.1 is 
a straightfonvard procedure which involves only the formula stated in remark 2.2. As 
mentioned before, it is possible and natural to implement such a calculation on a 
computer. As we shall see later, the multiplicity of GT) in PM) together with projection 
operators in (3.1) lead us immediately to the multiplicity of R$' in ITcM'. 

in H ' M '  IS ' known (this is the Clebsch-Gordan series problem; there are a number of 
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with multiplicity p. 
Then from a consequence of Bumside's theorem and the theory of dual pairs, there 
exist p linearly independent elements in which form a basis for the vector space 
Homo( Vi:), P(M1) of all intertwining operators from Vk:' to P ( M ) .  To simplify our 
exposition, it suffices to consider the highest weight vector h$& of @, then it follows 
that we can choose p elements p ,  , . . . , p p  of @ such that p & z ,  1 <i<p, are linearly 
independent highest weight vectors of the p copies of the G-module equivalent to 
Vi;' which are contained in FM'. In order to obtain an orthogonal direct sum decompo- 
sition of I( V$?) n H(M', the intersection of the isotypic component of Vk;) with H'M', 
we must find Hermitian operators in @ that leave invariant and that decompose 
'canonically' I( V&?) n H'M) into distinct eigenspaces. For this, we let W z ( M )  denote 
the vector space spanned by p,hg&, and let Kerg!M) denote its projection in IfcM', 
that is, Kerg!M' is the common kernel subspace in W%'!'M' of all operators L.,,p, and 
DaPp,  with a,<&,, l< i<r .  

We shall find operators in 'B which " m u t e  with the above differential operators' 
and decompose Kerz(!'M' into distinct one-dimensional eigenspaces. 

Remark 3.4. In [ 5 ] ,  Klink and Ton-That decomposed the GL(2k, C)-module HiM' by 
finding operators that commute with L , p , , ,  1 <i<r. The main dserence in our paper 
is that we now decompose the subspace of HLM'. We need to lind operators in 
% that commute with D.,p,, in addition to Lep#p,., 

The DaPpp, operators come into OUT consideratton naturally since they are a part of 
the basis for the Lie algebra SO*(k) .  Let us Erst concentrate on the operators which 
commute with Lapp?,, with ap,<pn,, 1 <i<r. We set 

Now, suppose the G-module (&'I, Vi;') of G occurs in 

where 17 ranges over all rows of the submatrix Zi for a fixed index i, l< i<r .  Let 
R'"' denote the 2k x 2k matrix 

[ R y  -4) R Y  1 
RBk R$$? ... 

Consider the following n x n matrices: 

p= [Pap1 D =  [Dczpl L = [Lao1 and E=[Enp]=[ -Lpo]  

where Pap, D,p and La, are defined in (3.2). 
Now, let us partition P into block matrices of the form 

... 
P= [PI". 

where each [pl.. is a p.xp. matrix, l<u, v<r. Similarly, we partition D, E, L into 
block matrices exactly like P. Then, we have the following: 



where, if we multiply two different types together, then their indices must agree at the 
position of multiplication. Moreover, the first and the last indices of a product of 
matrices of these three types must be the same. Then these operators generate a subalge- 
bra Y of differential operators in 42 that commute with the operators La,,,,, with 
ap,<pp,, 1 < i < r ,  where 1 <uj ,  U,, t j<r,  1 gi, j ,  sSq and q is a non-negative integer. ' 

Proof Let r' denote the complexification of so*@), that is r'=so(&, C), the Lie 
algebra of the complex 2nx7.n special orthogonal group. If CEY, then 5 is of the 
following form: 

where [ Y ]  is a n x n complex matrix, [ Q] = - [ YIT and [ W ] ,  [XI are n x n skew-symmetric 
matrices (the Lie algebra of SO(&, C )  can be written in several ways. The form that 
we are using here is the most convenient for our purpose). On the other hand, the 
differential operators Pap, D,p and L,, as dehed  in (3.2) also form a basis for P. Let 
S(so(2n, C ) )  denote the symmetric algebra of so(&, C )  and %(so(&, C)) denote the 
universal enveloping algebra of so(&, C ) .  We can now define the coadjoint represen- 
tation T of H' = S0(2n,  C )  in S(so(2n, C)) by the equation 

[ ~ ( h ' ) P l ( C )  =p(h'-'ch') h'€H P€S(SO(&, C ) )  and ( e r  

A polynomial peS(so(k ,  C)) is said to be K-invariant, where K is a subgroup of IT, 
if T(k)p=p,  for all k c K .  

We now have the canonical isomorphism 6 of S(so (k ,  C)) onto %(so(2n, C)) 
defined as follows (cf. [ 141) : 

Suppose peS(so(Zn, C)), then p can be expressed uniquely as 

P(O= C ai,ji...iJ,yt,j, . . . X U , .  . . WJ, 
s<d 

where the coefficients ai,j,.,.id, are symmetric functions, that is, 
aj.~,,j.,,, ... i,(,~j,(,)=a,,,, .,.,,, for all permutations a in the symmetric group of order s 
and for all integers s less than or equal to a fixed integer d. Now, 
b:S(s0(2n, C))+%(so(&, C)) is defined by 

. .  

4 (P) = ...jJAj, . . . Pi&# . . . D,. 
s<d 



The multiplicity problem in sympiectic groups 5859 

Let K denote the subgroup GL(pl, C )  x . . . x GL(p,, C )  of GL(n, C) .  Then K is 
embedded in GL(n, C )  as a block diagonal subgroup: [: ". :j k l~GL(p , ,  C )  1S iGr .  

An element u&l(so(2n, C)) is said to be K-invariant if the conditions 

1% L,,P,I =o for all Lapp, 1 < i < F  

are satisfied. Observe that Lap##, generate the Lie algebra of K .  
It is well known that the map 4 carries the K'-invariant polynomials onto the K -  

invariant differential operators (cf [ 141). Thus, to show that a differential operator of. 
the form 3.7 is K-invariant, it suffices to show that its inverse image under the map 4 
is a K-invariant polynomial function. For this, let us partition Y, X, W and Q in the 
same way as the matrix P. Now, let 

0 
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Ifj; is the inverse image of @ type 2 in (3.7), thenj; is given by 

.Ut) = Tr([XIwJ W l w ~  . , , [xInqog+ (1 W1oq* loe+z). 

Suppose V , + ~ = V ~ .  Now 

[?-(l"(t) =fi(k'-'tk') 
= T ~ ( ( ~ ~ ' l ~ l . , ~ ~ ~ ( ~ ~ ' l ~ l , . , ~ ~ , )  . . . (K~[Xl,,+,~uq+, )(E;:+,[ W,, ,&, )) 

=Tr(k,'[xl.,,[~~'l,,, . . . [xl,,+,[Wl,+,,,k.,) 

=Tr([Xlv,,[Wl,, . . . [~lyqyq+l[~vp+lut) 
=fi(t). 

Iff ,  is the inverse image o f @  of type 3 in (3.7), thenf, is given by 

.MO =Tr([~lr,t,[Qlr,e. . . [Qll ,c+, l~lr~+, l ,+,) .  

Suppose t,,+z= t , ,  then 

[~(k'lf,l(t) =f,(k'-'ck') 
' 

= ~ ~ ~ ~ ~ b i l ~ l ~ , ~ ~ ~ ~ ~ ~ ~ ~ ' l Q l ~ ~ ~ ~ ~ )  . . . (~ ; ' tQl t4q+L~tq+ ,  )(Ei:,[Wltq+,t,kt, )) 

=Tr(kb'[XI,,,,[Ql,~,, . . . l Q l r , + , ~ W l ~ , + , ~ , ~ ~ , )  

= T ~ ( [ ~ l ~ , J Q l ~ t s .  , . [Ql,~q+,lWIq+f,,) 

=f,(5). 
Now, it is clear that besides the commuting operators obtained from type 1, 2 and 3, 
we can multiply them together, as long as the products satisfy the conditions on the 
indices as stated in the theorem. Up to now, we are dealing with the algebra 
"(so(2n, C) ) .  However, it is easy to see that the commuting operators we have obtained 
also lie in the universal enveloping algebra %. Since any commuting operator in @ also 
belongs to %(s0(2n, C)), we have found all generators of the commuting operators we 
desired in OE. Therefore, the proof of the theorem is now completed. Q.E.D. 

Remark 3.8. In [5], Klink and Ton-That obtained a subalgebra of differential operators 
generated by the operators of type (1) in theorem 3.6. Our result includes their operators 
because U(n) is a subgroup of SO*(2n), as mentioned before. In addition, because of 
the three matrices P, D, and E, we have established two new types of commuting 
differential operators in @, namely, type (2) and (3) in theorem 3.6. This gives us more 
choices of operators for decomposing our tensor products. It is in this sense that we 
generalized the result in [SI. 

Example. We have the following commuting operator: 

Tr(lLl.,,[Ll,, . . . [LlU,", [PI.,,, [El,,,, . . . IEIv,,, l~ l t ,+ , . , ) .  
For 1 <i<r,  we define the matrix 
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where (R'pr))Tis the transpose of R'"'. Then we have the following: 

Theorem 3.9. The differential operators of the form 
Tr(A('I) . . . A($) . . . A(',)) A(') = R(P$ or R'P','' (3.10) 

for 1 <i,<r, where s is a non-negative integer, generate the same subalgebra Y of 
invariant operators as the differential operators defined in theorem 3.4 (the indices 
il ,  . . . , i, may not he distinct). 

Proof. The proof of this theorem is exactly the same as the proof of lemma 6 in 
[15]. Q.E.D. 

At this point, we have found all operators in 42 which commute with the operators 
L,,,,p,, with ap,<p,, I < i < r .  Therefore, we only need to h d  operators in V that 
commute with the operators with ap,<pp,, l < i < r ,  and which decompose' 
KerFzM' into distinct one-dimensional eigenspaces. The way of constructing commut- 
ing operators as shown in the proof of 3.6 is not suitable in this case because the 
operators DmP,p,,, do not embed in the Lie algebra SO*(2n) diagonally as L.,p,, . Here, 
we shall,construct our commuting operators by 'brute force' with the help of theorem 
3.9. The explicit form of certain of such commuting operators are given in the following : 

Theorem 3.11. In the algebra Y ,  the differential operators of the form 

A($) = R(Py) or R'Pp)* 1 Tr( ( - 1 ) q ~ l ) .  . .A(" . . . A('') 

where il , . . . , i, are k e d  indices and may not be distinct, s is a non-negative integer, 
q is the number of A'") that represents R(pv)* and the sum is over all possible variation 
for each R'pP)' and R(p'I', generate a subalgebra 9l of differential operators in Y that 
" m n t e  with the differential operators Dnp,pg,, with ap,<pp,,  I< i<r .  

Proof: To avoid cumbersome notation, we use the Einstein convention. It was shown 
in [16] that the operators 

R&P= ~ 2 % )  - ~ p $ ~ ~  + = -R$&. + R&'$'!* =Rip]+ + RPi+* 
R&'?L~=&PL?~~+R~A~ , i s a  P<k 

commute with D,+8Dl, with ap,<pp,. 1 < i < r .  
Now, let &$)* denote the a p entry of the matrix R@"*, then we have 

&$)* = RjP" + L o + *  &?Yp + = R p  @Vk = -R( $a+k f) 

and 

&):p=-Rgikc 1 <a P<k,  

p,pa2a 3 .  I .  R , q + ,  -(q . . .Ra,czl -",) ' 

Now, any term in Tr(Z(-l)qA(io . . .A'"') is given by 

If we consider the product X$;)R$$$ . . . R$2!, for all possible,indices a , ,  a2 ,  . . . , a$, 
then the sum 

where R%;,+> = R&$+, or R Z : ,  . 

1 R,,22R,,,, 0 ) r (Pd . . . R&'S) 
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(over all possible indices) is equal to Tr(Z(A('l) . . . A'")), up to signs, where the sum 
is over all possible variation for each R(P'j)* and R%). Now, the signs agree if we change 
an even number*of R'PQ) to R(p*)* and the signs are Merent ifwe change an odd number 
of RIP+) to R'pd . As a result 

R?Pd:'R$& . , . R$,$ = Tr (- l)qA('L) . . . A".' ( 
where q is the number of A'" that represents RrPQJ*. Clearly, 

commutes with D,p,, with ap,<pp,, 1 SiGr .  Therefore, Trf,X(-l)9A('1) . . ,A".') com- 
mutes with the merentia1 operators D,,,B,, with a,<&, l<i<r ,  and Tr(Z(-l)q 
A'"). . .A('*') is obviously an element of V .  This complete the proof of ow 
theorem. Q.E.D. 

Example. We have the following commuting operator in ?Y: 

). T ~ ( R ( P ~ ) R ' P ~  + R ( P I ) * R ( P ~ *  - R ( P I ) * R ( F ~  - R ( P I ) R ~ ) *  

To be useful for our programme of multiplicity breaking, the commuting operators 
must be Hermitian. Therefore, we want to know what the adjoint of an operator in CV 
looks Like. Instead of examining the adjoints of the operators defined in theorem 3.6 
directly, it is more convenient to check the adjoints of the commuting operators using 
the forms defined in theorem 3.9. First we have the following: 

Proposition 3.12. The adjoint of 

Tr(A('l) . . .A ($ )  . . .A(',)) 

where A(';'=R%) or R'P$*, is 

Tr(A'" . . . A('L)) 

therefore, the adjoint of an element in Y' is still in Y .  

Proox It was shown in [5] that the adjoint of 

where q ranges over an appropriate set of indices, is equal to 
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Now, if 0 is an operator, then let O* denote the adjoint of O. It follows that 
( ~ ~ ( ~ ( f i )  , I , A(’,))* = (a(ii) R(id e) )* =,a2 = > E l , .  “ ,a, 

7’ * p -(id I?”..” * = (R&) ( a,n,%,a,. . . O.-,O,) 

<a1-, . , . Ea*_,,, =&I?%&@- I) (id 

=Tr(A(’?), . . 
Hence, the proof is completed. Q.E.D. 

Now, we can give the explicit form of the adjoint of an operator in g in the 
following: 

Proposition 3.13. The adjoint of 

T T ( ~  ( - l )q ,4( i1)  . . . 

is 

Hence, the adjoint of an element in g is st i l l  in Y. 

Proof: It follows from the fact that the summation is over all possible variation of 
R@g* and R(”+), 1 Q’Gs, and proposition 3.12 Q.E.D. 

Remark 3.14. It is well known that the sum of an operator and its adjoint is Hermitian. 
Therefore, if an operator U in g is not Hermitian, then since its adjoint #*, is still in 
g according to the previous result, we can use the Hermitian operator #+U*. As a 
result, we can always find a Hermitian operator in g and use it to decompose the 
KerE(M) space into distinct one-dimensional subspaces. In general we choose the com- 
muting differential operator in an ud hoc manner. However, in practice, just a low 
degree differential operator generally suffices. Moreover, it has been shown in [17] that 
all the differential operators defined in theorem 3.9 can be generated from a 6nite set. 
In the next section, we shall illustrate the procedure by an example. 

4. An example 

In this section, let us consider the decomposition of the two-fold tensor product 
V$,$ ”0 V&$O) of Sp(4, C ) .  According to our program of multiplicity breaking, we con- 
sider the Fock space S(C3x4), which contains the Sp(4, C)-module P(2,1,2)(C3x4) with 
p r=2  and p2= 1. The module in turn contains the submodule 
H(Z122)(C3x4).  By theorem 2.5, H(z’s2’(C3x4) is isomorphic to V&$”@V&” and by 
theorem 2.1, ~(2.’.z)(C3x4) is isomorphic to v&?)@ V&Y)@ v&Y’. 

Now, using the formula in remark 2.2, we have the following two decompositions: 

P(2*1*2)(C3x4) 

(2,1)@(2,0)=(4, 1)@(3,2)@(3,0)@2(2, 1)@(1,0) 
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and 

C2,0)@(1,0)@ (2,0)=(5,0)@2(4,1)82(3,2)03(3,0)@4(2,1)@3(1,0). 

Every irreducible representation in the decomposition of V$ ’)@ Vi$’) has multiplic- 
ity one except Vk$’). Therefore, we only need to deal with the irreducible module 
Vi:’) with multiplicity two in H(2,’f’(C3x4). Recall that H(2.’,2)(C3x4) consists of all 
polynomial functions in P(2.’.2)(C3x4) which are simultaneously annihilated by the 
operators 

- 2 a2 
D I ~ =  ( and 

a 4 

LIZ= z1,- az,, azI,+,az2, azl,az,,+2 
Iffo is the highest weight vector of VL?), then it is given byfo=zll(zllz22-zl~21). 

We use the dual pair (S0*(6), Sp(4, C)). The multiplicity of Vi$’) in the Sp(4, C)- 
module P(z,1’)(C3x4) is four and there exist four linearly independent differential’ 
operators 

L3ZpU L3lPI3 P12L3 IL32 and DizP23P13 

which farm a basis for Home( V$”, P(2.’,2)(C3 4) ) ,  where 
4 2 

and 

At t h i s  point, we want to mention how to choose the above four linearly independent 
operators. Our goal is to find four elements in %(SO*(@) that send V&” into 
p(2.l.2) (C””4. In %(S0*(6)), the raising operators are P e ~  and LeP for a > p  and the 
lowering operators are Pap and D,B for a <p.  Therefore, we want to combine certain 
raising and lowering operators in %(S0*(6)) so that we can raise the 2-tuple of integers 
(2, 1) to ( 2 ,  L2). 

fi=L32p23fo fi=L31PllfO f3 = P12L3I L32fO and&= D I z P z s P I ~ ~ O .  

Now; let Kerg$(2.’2) denote the projection of W$$(2,”) into H(2,’s2)(C3x4), that is, 
Ker!,%)(’.”’ is the common kernel space of the operators Ll2 and D I 2 .  Then the applica- 
tion of LIZ and D I 2  to a general vector in W s ) ( z , ’ 8 2 )  of the form 
all; +a2fi+a3f,+a4j5,  a,eC, leads to a two-dimensional subspace which is spanned 
by the vectors 3/2f i  + 3/2f i  +f3 and 2 h  +f4. Hence, Kerg)(21.2) is a two-dimensional 
subspace. We now use the Casimir operator 

Let us return to our example. The space Wg$2*?’2.1*2) is spanned by 

Co=-(1/2) Tr(R(’)R(Z)-R(’)R(2)* -R(‘)*R(2)+ R(’)*R(2’* ) 

where 
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and 

It is easy to see that I?$ and R$' commutes with each other since they involve 
different set of variables. Therefore, the Casimir operator CO is Hermitian. The Casimir 
operator CO acting on Ker%''2,1s2' has two distinct eigenvalues AI = 6 and Az = 1.  The 
corespondhg eigenvector for A1 is hl= 2h +f4 and the corresponding eigenvector for 
A2 is h2 = 3/2h - 1 /2fi +h - 3/2f4. hl and h2 are orthogonal vectors since AI # A2 and 
CO is Hermitian. In conclusion, the two intertwining operators that send into two 
orthogonal (equivalent) submodules of H'z~'"'(C3x4) are 

PI =2L3iPii+ D1zp23P13 

and 

Pz=3/&zp23- 1/2L31P13 + P I z L ~ I L ~ ~ - ~ / ~ D ~ z P z ~ P ~ ~  
and any element f~ V $ y )  can be mapped with these operators into H"1sz'(C3x4). 

5. Conclusion 

We have shown how to decompose an r-fold tensor product of arbitrary irreducible 
representations of Sp(X, C ) ,  by &ding generalized Casimir operators whose eigenval- 
ues and eigenvectors can be used to resolve the ambiguity occuring when equivalent 
representations appear more than once in the decomposition. We first embed the tensor 
product space H'M' into a bigger polynomial space. Then, maps that carry an irreducible 
representation space, labelled by (m), into the tensor product space are constructed. 

To obtain an orthogonal direct s u m  copies of (m) in H'M', we have constructed an 
algebra of operators which leaves H''' invariant. Certain elements of these commuting 
operators are Hermitian. Therefore, their eigenvalues can be used to form an orthogonal 
direct sum of the copies of (m) in I( Vi:)) n 

It is possible to implement such a procedure on a computer and our immediate goal 
is to write a computer program for the procedure. In fact, some of the calculations in 
section 4 were computed using the computer program Mathematica. This procedure of 
multiplicity breaking of tensor products can be applied to other Lie groups. We intend 
to investigate such a problem in a further publication. 
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